Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...


The Debug messages use port 6 and they are always unconfirmed. By default, these messages are enabled and have no repetitions, but they may be disabled or increased by the number of repetitions used (see downlink messages). These messages do not have a fixed length as their payload depends on the type of debug message.

The first 2 bytes of the payload represent the debug code in Big Endian format, and the rest of the payload(if any) contains additional parameters which meaning depend on the exact debug code.

Debug code

Meaning

Additional parameters

899 (0x383)

Invalid user request. The downlink command has not been recognised or provided configuration cannot be used.

None

805 (0x325)

No change in configuration. Provided configuration parameters are equal to the current parameters in use

None

4.3 Downlink messages


Downlink messages are those sent from the Network to the Sensor. The sensor supports confirmed and unconfirmed downlink messages.

...

To change the data rate to DR0 you need to send one byte in binary representation 00010000 (0x10) to port 52. Many LNS interfaces have Base64 input and you can use an online converter from binary to Base64. 00010000 binary is “EA==” string in Base64.

To set 4 unconfirmed attempts on DR0 send “QA==” (01000000 in binary) to port 52

To change the data rate to DR3 you need to send “Ew==“ (00010011 in binary) to port 52.

...

  • send 11 to port 52(No ADR, Data Rate DR1, unconfirmed message without repetitions)

  • send 00 64 to port 53( messages will be sent every 100 seconds even without any new events)

To reset the transmission policy table to default, send 0E 10 10 3C 20 28 to port 53 (3600 = 0xE10, 60 = 0x03c, 40 = 0x028).

It is important to remember, that minimum delay between LoRaWAN messages including Counter Update messages is also defined by LoRaWAN specifications(like duty cycle limitations in EU868 region) and Car Counter abides by these limitations. In the case of low data rates, delays caused by duty cycle limitations can be significant(for example, about 100 s for DR0).

...